Уравнение малых поперечных колебаний струны

Материалы » Звук: физика, химия, биология » Уравнение малых поперечных колебаний струны

Страница 2

где

Сократим на ∆x∆t и переходя к пределу при x2→x1, t2→t1, получим дифференциальное уравнение поперечных колебаний струны

(4)

В случае постоянной плотности ρ = const этому уравнению обычно придают вид

(5)

где

(6)

есть плотность силы, отнесенная к единице массы. При отсутствии внешней силы получим однородное уравнение

или

описывающее свободные колебания струны. Это уравнение является простейшим примером уравнения гиперболического типа.

Если в точке x0(x1<x0<x2) приложена сосредоточенная сила f0(t) (рис. 2), то уравнение (3) запишется так:

Поскольку скорости точек струны ограничены, то при x1→x0 и x2→x0 интегралы в левой части этого равенства стремятся к нулю, и равенство (3) принимает вид

(7)

Пользуясь теоремой о среднем, сокращая обе части равенства на ∆t и переходя к пределу при t2→t1 получим:

Отсюда видно, что в точке приложения сосредоточенной силы первые производные претерпевают разрыв и дифференциальное уравнение теряет смысл. В этой точке должны выполняться два условия сопряжения

(8)

второе из которых выражает непрерывность струны, второе определяет величину излома струны в точке x0, зависящую от f0(t) и натяжения T0.

Теперь рассмотрим задачу о поперечных колебаниях струны, закрепленной на концах. В этой задаче u(x, t) дает отклонение струны от оси x. Если концы струны 0 ≤ x ≤ l закреплены, то должны выполняться «граничные условия»

u(0, t) = 0, u(l, t) = 0.

Так как процесс колебания струны зависит от её начальной формы и распределения скоростей, то следует задать «начальные условия»:

Таким образом, дополнительные условия состоят из граничных и начальных условий, где φ(x) и ψ(x) – заданные функции точки.

Эти условия вполне определяют решение уравнения колебания струны

2.2 Метод Фурье для уравнения колебаний ограниченной струны.

Начальные условия:

Граничные условия:

Страницы: 1 2 3

Разделы

Copyright © 2024 - All Rights Reserved - www.musicexplore.ru